CHƯƠNG 5 (tiếp)

Sự Hiểu Biết Thật Sự

 

Khi Ali được mười một tuổi, thằng bé mua quyển sách có tên gọi The Ultimate Book of Useless Facts (tạm dịch: Cuốn sách cơ bản về những sự thật vô nghĩa). Trong suốt mấy tuần lễ thằng bé thường mang nó theo bên mình trong những chuyến đi chơi cuối tuần của gia đình tôi và đọc to lên những điều lạ lùng nhất. “Mỗi một lần liếm một chiếc tem thư, bạn tiêu thụ khoảng 1/10 calorie.” “Hầu hết những chiếc còi ô tô ở Mỹ đều kêu ở cao độ F.” “Hầu như mọi bồn cầu đều có tiếng xả nước ở cao độ E.” Tất cả đều là những điều không có căn cứ, đều là những dòng chữ vô nghĩa về “kiến thức” – nhưng mà chúng vẫn có quyền được biên soạn thành một cuốn sách. Thằng bé khi ấy sẽ bật cười dữ dội đến nỗi cả cơ thể nó run lên và sẽ nói rằng “Loài người chúng ta ngớ ngẩn quá!” Chúng ta đúng là như vậy, và tôi là kẻ đầu tin xin thừa nhận điều đó.  

Tôi là một kẻ nghiện học trong suốt thời niên thiếu của mình. Tôi tôn sùng tri thức. Tôi từng kiêu ngạo về những gì tôi biết và bảo vệ chúng đến cùng – cho tới khi tôi bắt đầu làm việc cho Google. Trong vài tháng đầu tiên Ảo tưởng Kiến thức của tôi hoàn toàn bị phá vỡ. Sự mới lạ của Internet đã mang tới cho tôi rất nhiều điều mà tôi không biết dù đã trải qua nhiều năm kinh nghiệm và buộc tôi phải xem xét lại những điều mà tôi từng cho là đúng. Khi đi qua dãy hành lang ở một nơi chốn mà tại đó mọi con người đều thông minh hơn mình đã làm thay đổi niềm tin của tôi vào cái ý tưởng rằng “chỉ có một câu trả lời đúng” mà chúng ta từng được học ở trường. Nhiều thành viên trong đội ngũ đa dạng của chúng tôi nhìn thế giới dưới nhiều góc độ khác nhau và thường thảo luận các chủ đề mà tại đó nhiều quan điểm cá nhân đều đúng cả. Mặt khác, phương thức tiếp cận số liệu cực đoan trong việc ra quyết định thường phơi bày sự kém hiệu quả trong một số quan điểm. Đôi khi những ý tưởng được bảo vệ đầy nhiệt huyết lúc đầu hoá ra lại là sai lầm về sau này.  Nhưng sự cởi mở lại khuyến khích mọi người phát biểu ý kiến và mang tới sự đa dạng ghê gớm cho những cuộc thảo luận. Thường thì một thanh niên hai mươi tuổi sẽ thách thức quan điểm của một vị phó chủ tịch nhiều kinh nghiệm hơn hẳn, và thường là người có câu trả lời đúng. Sau một năm làm việc tại Google, tôi nhận ra rằng tôi biết quá ít so với tất cả những gì cần biết tới ngoài kia. Việc tôi biết quá ít, thực ra, giống như là tôi chẳng biết gì hết trơn thì đúng hơn. Thật may là sự hăng hái học hỏi của tôi đã áp đảo ham muốn trong tôi về việc luôn luôn đúng. Sự phát hiện này đã mang đến cho tôi cái cảm giác sung sướng khi tôi từ bỏ cuộc đấu tranh không bao giờ ngừng nghỉ nhằm bảo vệ quan điểm của mình và chỉ đơn giản là tận hưởng con đường học vấn vô tận. Niềm vui ấy đã thúc đẩy tôi, ngay cả khi tôi viết cuốn sách này, luôn dừng lại và đặt ra câu hỏi rằng liệu những điều nhỏ nhoi mà tôi biết có thực sự phù hợp với quan điểm của bạn hay không. Nó thúc đẩy tôi cần phải yêu cầu bạn rằng hãy đặt ra câu hỏi về tính hợp lý của chúng và tự tìm lấy sự thật cho riêng mình. Nếu như có những điều mà bạn đọc được ở đây hoá ra lại là sai lầm, tôi rất mong bạn thứ lỗi cho tôi. Việc đôi khi phạm sai lầm là điều rất đỗi hiển nhiên trong bản chất của kiến thức. Khi ấy, mong bạn hãy chỉ cho tôi biết, và rồi cùng với nhau chúng ta có thể học hỏi thêm.    

Nếu như bạn được che chở khỏi cái Ảo tưởng về kiến thức, thì bạn là một trong số ít ỏi những kẻ may mắn. Tôi đã mất rất nhiều năm để hiểu ra được rằng bất kể tôi tin tưởng mạnh mẽ những gì tôi biết là đúng đến nhường nào, thì tôi vẫn có thể sai lầm. Vẫn luôn có khả năng rằng tôi đã bỏ lỡ một chi tiết quan trọng, và vẫn luôn có những điều khác mà tôi không hề biết. Tôi không phải lúc nào cũng đúng – đó là điều duy nhất mà tôi biết là đúng.

Nhà vật lý học đoạt giải Nobel người Nga Lev Landau[1] từng nói, “Các nhà vũ trụ học vẫn thường sai lầm nhưng chẳng bao giờ nghi ngờ.” Đó là một lời nhận xét đáng ngưỡng mộ, đặc biệt là từ một nhà khoa học danh tiếng. Chính lịch sử trong ngành nghiên cứu của ông đã chứng minh điều này. Trong ngành vũ trụ học, ban đầu chúng ta giả định rằng Trái đất là một mặt phẳng; khi mà ta biết rằng Trái đất tròn, chúng ta bị thuyết phục rằng nó là trung tâm của cả vũ trụ xung quanh và tất cả các vật thể trên trời khác đều quay quanh nó. Trong mỗi một bước tiến, những người từng sai lầm chưa bao giờ nghi ngờ hết cả.  

Einstein, dù vô cùng tài giỏi, chưa bao giờ kiêu ngạo giả định về sự hiểu biết tuyệt đối. Ông từng nói rằng, “Trong lý thuyết, lý thuyết và thực hành là như nhau. Trong thực tế, thì không như vậy.” Khi ông phạm phải một sai lầm lớn trong việc cố gắng “sửa chữa” phương trình của mình bằng cách thêm vào một hằng số nhằm điều chỉnh tác động của trọng lực, ông thậm chí còn thừa nhận rằng mình đã sai. Kỳ lạ là, sau đó ông đã bị phát hiện ra đã sai lầm vì đã sai lầm khi mà các nhà khoa học nhận thấy rằng giải pháp tuỳ tiện của ông, hằng số vũ trụ, thực ra là một trong những sự thật cơ bản nhất của vũ trụ.     

Tuy vậy, chúng ta không nên buộc tội chính mình về những gì mà ta cho là ta đã biết. Làm thế nào mà chúng ta có thể tiếp tục làm những điều mà mình cần phải làm nếu như ta tin rằng chúng dựa trên những giả định sai lầm? Làm sao mà một người có thể hăng say làm một điều gì đó nếu cô ta tin rằng nó hoàn toàn sai lầm? Mọi con người, ngay cả những kẻ bất lương hay phạm pháp, cũng cần đến một thứ logic nào đó để biện minh cho những gì họ làm.

Mặc dù vậy, chúng ta càng biết nhiều, thì ta càng nhận ra rằng mình chỉ nhìn thấy một phần nhỏ bé của sự thật mà thôi. Giống như lời Khổng Tử từng nói: 

 

“Tri thức thực sự là hiểu về mức độ ngu dốt của một người.”

 

 


[1] Lev Davidovich Landau (tiếng Nga: Лев Давидович Ландау) (22/1/1908 – 1/4/1968), một nhà vật lý Liên Xô nổi tiếng với những đóng góp trong vật lý lý thuyết. Ví dụ: phương pháp ma trận mật độ ứng dụng trong cơ học lượng tử, lý thuyết lượng tử về nghịch từ, lý thuyết về hiện tượng siêu chảy, lý thuyết về chuyển pha bậc 2, lý thuyết Ginzburg-Landau về siêu dẫn, lý thuyết chất lỏng Fermi, sự tắt dần Landau trong vật lý plasma, điểm cực Landau trong điện động lực học lượng tử,… Ông đoạt giải Nôbel Vật lý năm 1962 cho đóng góp trong Lý thuyết toán của Sự siêu chảy.

Advertisements